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Alzheimer's disease (AD), the most common cause of 
dementia is accompanied by progressive memory loss 
and other cognitive functions. The conditionis estimated 
to affect approximately 36 million people, worldwide (1). 
AD is characterized by the presence of extracellular amy-
loid β (Aβ) deposits, intracellular neurofibrillary tangle-
sand senile plaques in the cortex, hippocampus, basal 
forebrain and amygdale (2). Neurofibrillary tangles for-
mation is the result of intracellular fibrillar aggregation 
of the microtubule-associated protein tau that is hyper-
phosphorylated and oxidized. Senile plaques consist of 
insoluble fibrillar Aβ. It is established that Aβ is formed af-
ter sequential cleavage of amyloid precursor protein and 
secreted to the extracellular space. It also inhibits hip-
pocampal long-term potentiation and disrupts the syn-
aptic plasticity (3). In addition, Aβ accumulation induces 
an elevation in levels of reactive oxygen species (ROS) in 
neurons, leading to apoptotic neuronal death in rats and 
mice (4). Studies showed that the accumulation of Aβ in 
brain plays an important role in the pathophysiology of 
AD and a close correlation exits between Aβ procedure 
and the neurodegeneration process of AD (5). There ex-
ists evidence suggesting that memory impairment in AD 
begins with changes in hippocampal synaptic functions 
and then gradually progresses to neurodegeneration and 
neuronal loss in these patients (6).

The Aβ-induced damage in hippocampus might un-
derlie some of the AD behavioral deficits. Long-term po-
tentiation (LTP) is one of the most important forms of 
synaptic plasticity, linked to learning and memory (7). 
The Aβ makes changes in LTP, in the hippocampus and 
consequently impairs cognition and memory in rodents 
(3) and is widely reported to cause lipid peroxidation in 
brain cell membranes, leading to 4-hydroxy-2-nonenal 
(HNE) and acrolein formation, both toxic to neurons. 
These products alter the membrane protein conforma-
tion and eventually lead to neuronal death (8). The Aβ 
initiates free radical processes, resulting in protein oxi-

dation, lipid peroxidation, ROS formation and cellular 
dysfunction, leading to calcium ion accumulation and 
subsequent neuronal death (9).

Pervious experimental studies have shown that Aβ 
(25-35) induce a wide pattern of central modifications, 
reminiscent of the human physiopathology, particularly 
short- and long-term memory deficit, oxidative stress, 
apoptosis, neuroinflammation, acetylcholine impair-
ment, hippocampus alteration, tau hyperphosphoryla-
tion and amyloid burden (10). The deposition of β-amyloid 
protein in brain is related to learning impairment and 
cholinergic neuronal degeneration and the β-amyloid 
protein-treated rats could be used as AD animal models 
(11). The key brain regions, involved in the Morris water 
maze (MWM) task navigation, include the striatum, the 
frontal lobe and especially, the hippocampus (12).

The hippocampus structure has a key role in cognition 
and psychological function. Animal studies have shown 
that this structure is rapidly and extremely affected by 
an Aβ fragment injection (Aβ (25-35)) in rats, damaging 
the structure and function of the hippocampus (13, 14). 
The hippocampus plays an important role in contextual 
memory; the hippocampus injuries negatively affect the 
MVM task performance (15).

Nitta et al. showed that the water maze task perfor-
mance was impaired in β-amyloid-treated rats, and the 
choline acetyl transferase activity significantly decreased 
in the frontal cortex and hippocampus (16). Therefore, 
the β-amyloid protein deposition in brain is believed to 
be related to learning impairment and cholinergic neu-
ronal degeneration. It also means that β-amyloid protein-
treated rats could be used as animal models for AD (11). 
Moreover, the studies indicated that intracerebroventric-
ular ( ICV) injection of Aβ (25-35), induced impairment in 
the passive-avoidance and redial-arm maze tasks, in the 
rat (11). Maurice confirmed the negative effect of ICV injec-
tion of Aβ (25-35) on learning in the Y-maze, passive avoid-
ance and water maze tasks (17). The studies also reported 
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that bilateral injection of Aβ (25-35) induced learning 
deficits in passive- avoidance tasks, in rats (18). The hippo-
campus has an important role in spatial navigation and 
consolidation of information from short-term to long-
term memory. Evidence have suggested that the memory 
impairment in AD begins with changes in hippocampal 
synaptic functions and progresses to neurodegenera-
tion and neuronal loss in these patients (19). It has been 
reported that Aβ administration makes changes in LTP in 
the hippocampus and consequently leads to cognitive 
dysfunction and memory impairment in rodents (20). 
It is clear that oxidative stress plays a role in AD-induced 
neurotoxicity in the brain. The Aβ enters the bilayer neu-
ronal membrane and generates oxygen-dependent free 
radicals, causing lipid and protein oxidation (21). Oxida-
tive stress disrupts the blood brain barrier, leading to 
toxic substances passage to the brain and ultimately, 
resulting in the progression of various neurodegenera-
tive diseases. Furthermore, the Aβ deposition activates 
the acute immune response of microglial cells and astro-
cytes, leading to production and activation of inflamma-
tion-related proteins, including complement factors and 
cytokines like interleukin-1, interleukin-6 and tumor ne-
crosis factor-α and therefore leading to synaptic damage, 
neuronal loss and the activation of other inflammatory 
participants (9, 22, 23). As mentioned above, oxidative 
stress, following Aβ, involves development and progres-
sion of the AD. Brain is sensitive to oxidative stress, due to 
low antioxidant and cell membrane lipid levels (24). Oxi-
dative stress reflects an imbalance between the systemic 
ROS manifestation and a biological system ability of de-
toxifying the reactive intermediate molecules or easily 
repairing the resulting damage.

Therefore, the use of an external antioxidant is one of the 
most common therapeutic strategies for neurotoxicity 
treatment. Several experimental studies have shown that 
dietary enrichment with nutritional antioxidant could 
improve brain damage and cognitive function (25-28).

A great number of different spices and aromatic herbs 
have been used as antioxidants in neurological diseases 
(29, 30).

Antioxidants that prevent the detrimental consequenc-
es of Aβ are consequently considered to be a promoting 
approach to brain neuroprotection in the AD (31).
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